2. Given the region bounded by the graphs of $y = e^{-x^3}$, x = 0, y = 0, and x = b (b > 0).

a. Find the area of the region if $b = 1$.	
	+2: integral
Area = $\int_{0}^{1} e^{-x^3} dx = .8075$	+1: answer
b. Find the volume of the solid generated if the region is	
rotated about the x-axis and $b = 1$.	+2: integrand
Volume =	+1: limits, constant, answer
$\int_{0}^{1} \left(e^{-x^{3}}\right)^{2} dx = \pi \int_{0}^{1} e^{-2x^{3}} dx = 0.6907\pi \approx 2.170$	
c. Find the volume of the solid generated when the	
region is rotated about the x-axis and $b = 10$.	+2: integrand
Volume = $\pi \int_{0}^{10} (e^{-x^3})^2 dx = \pi \int_{0}^{10} e^{-2x^3} dx = .7088\pi \approx 2.227$	+1: limits, constant, answer

4. Consider the graph of $y = \ln 2x$.

a. Set up the integral used to find the area under the graph of this curve between $x = 1$ and $x = 3$.	+1: integrand
$Area = \int_{1}^{3} \ln 2x \ dx$	+1: limits
b. Identify u and dv for finding the integral using	
integration by parts.	$+1: u = \ln 2x$
$u = \ln 2x$ and $dv = dx$	+1: dv = dx
c. Evaluate the integral using integration by parts.	a -
$u = \ln 2x \qquad dv = dx$	+2: <i>uv</i> − ∫ <i>vdu</i>
Let $du = \frac{1}{2x} 2dx$ $v = x$	+2: antiderivatives
Then,	+1: answer
$\int_{1}^{3} \ln 2x dx = x \ln 2x - \int x \cdot \frac{1}{x} dx \bigg _{1}^{3}$	
$= [x \ln 2x - x]_1^3 = 3 \ln 6 - \ln 2 - 2 \approx 2.682$	

7. Consider the function $h(x) = \frac{x - \cos x}{x}$.

C	T
a. Can you use L'Hopital's Rule to find $\lim_{x \to a} h(x)$?	
$x \rightarrow \infty$	+1: yes
Explain your reasoning.	
	+2: explanation
· · · · · · · · · · · · · · · · · · ·	2. explanation
Yes; $\lim_{x\to\infty} h(x)$ is of the form $\frac{\infty}{\infty}$. Even though cosine	
oscillates, the x term dominates and the numerator goes	
to infinity.	
b. Find $\lim_{x \to \infty} h(x)$ analytically.	
$x \rightarrow \infty$	
	+2: separation into fractions
$x - \cos x$ $(x \cos x)$	and separation and services.
$\lim_{x \to \infty} \frac{x - \cos x}{x} = \lim_{x \to \infty} \left(\frac{x}{x} - \frac{\cos x}{x} \right) =$	+1: answer
$X \to \infty$ $X \longrightarrow X \to \infty$ $X \to \infty$	+1: answer
cosx	
$\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{\cos x}{x} = 1 - 0 = 1$	
$x \to \infty$ $x \to \infty$ $x \to \infty$	
c. Set up the integral needed to find the area under the	
graph of $h(x)$ between $x = 1$ and $x = \pi$	
	+2: integrand
(above the <i>x</i> -axis).	2. megrand
$\frac{\pi}{c}x - \cos x$	+1: limits
$Area = \int_{-\pi}^{\pi} \frac{x - \cos x}{x} dx$	
1 x	
	The state of the s

8. Consider the function $g(x) = \frac{e^x - 1}{x^2}$.

a. Can you use L'Hopital's Rule to find $\lim_{x\to 0^+} g(x)$?	+1: yes
Explain your reasoning.	11. 903
	+2: explanation
Yes; $\lim_{x\to 0^+} g(x)$ is of the form $\frac{0}{0}$.	
b. Find $\lim_{x\to 0^+} g(x)$ analytically.	
$\lim_{x \to 0^+} \frac{e^x - 1}{x^2} = \lim_{x \to 0^+} \frac{e^x}{2x} = \frac{1}{0}$. This limit does not exist.	+2: Uses L'Hopital's rule correctly
$\lim_{x\to 0^+} x^2 = \lim_{x\to 0^+} 2x = 0$	+1: answer
c. Describe the type of indeterminate form involved in	
directly evaluating $\lim_{x\to\infty} x^2 e^{-x}$. Evaluate this limit using L'Hopital's Rule.	+1: indeterminate form
The indeterminate form is the form $\infty \cdot 0$.	+2: answer
$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0$	

9. Consider the function $f(x) = \frac{2}{x^3}$.

a. The evaluation of $\int_{-1}^{1} \frac{2}{x^3} dx = 0$ is incorrect. Explain	+2: explanation
why.	
$\frac{2}{x^3}$ has an infinite discontinuity at $x = 0$.	
b. Determine whether this improper integral converges or diverges. Show your work to justify your conclusion.	
,	+1: uses limits
$\int_{-1}^{1} \frac{2}{x^3} dx = \lim_{t \to 0^-} \int_{-1}^{t} \frac{2}{x^3} dx + \lim_{s \to 0^+} \int_{s}^{1} \frac{2}{x^3} dx =$	+1: antiderivative
$\left \lim_{t \to 0^{-}} \frac{-1}{x^{2}} \right _{-1}^{t} + \lim_{s \to 0^{+}} \frac{-1}{x^{2}} \Big _{s}^{1}$	+1: diverges
Therefore, this improper integral diverges.	
c. Evaluate $\int_{0}^{\infty} f(x)dx$ analytically.	
1	+2: uses limit +1: antiderivative
$\int_{1}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{1}^{t} \frac{2}{x^{3}} dx = \lim_{t \to \infty} \frac{-1}{x^{2}} \Big _{1}^{t} = 1$	+1: answer