Derivatives

1. Find
$$f'(1)$$
 if $f(x) = (x^4 - x^2)(2x^3 + x)$.

2. Find
$$f'(x)$$
 if $f(x) = \sqrt{x^4 + x^2}$

3. Find
$$f'(x)$$
 at $x = 2$ if $f(x) = \frac{x^2 + 2x}{x^4 - x^3}$

4. Find
$$f'(x)$$
 if $f(x) = \frac{x^2 - 1}{x - 1}$

5. Find
$$\frac{dy}{dx}$$
 at $x = 1$ if $y = \frac{t^2 + 2}{t^2 - 2}$ and $t = x^3$

6. Find
$$\frac{dy}{dx}$$
 if $y = \cos^2 x$

7. Find
$$\frac{dy}{dx}$$
 if $y = \sqrt{\sin 3x}$

8. Find
$$y'$$
 if $y = \csc^2 x^2$

9. Find
$$\frac{dr}{d\theta}$$
 if $r = \cos(1 + \sin \theta)$

10. Find
$$\frac{d^2y}{dx^2}$$
 if $\cos y = \sin x + 1$

11. Find
$$\frac{dr}{d\theta}$$
 if $r = \frac{\sec \theta}{1 + \tan \theta}$

12. Find
$$\frac{dy}{dx}$$
 if $y = \sin(\cos(\sqrt{x}))$

13. Find
$$\frac{dy}{dx}$$
 at (1,1) if $x^{\frac{1}{2}} + y^{\frac{1}{2}} = 2y^2$

14. Find
$$\frac{dy}{dx}$$
 at (2,1) if $\frac{x+y}{x-y} = 3$

- 15. Find the equation of the tangent to the graph of $y = \frac{x^2 + 4}{x 6}$ at x = 5.
- 16. Find the values of x where the tangent to the graph of $y = 2x^3 8x$ has a slope equal to the slope of y = x.
- 17. Find the coordinates where the tangent to the graph of $y = 8 3x x^2$ is parallel to the x-axis.

Related Rates

- 18. A spherical balloon is inflating at a rate of 27π in³ / sec. How fast is the radius of the balloon increasing when the radius is 3 in?
- 19. A cylindrical tank with a radius of 6 meters is filling with a fluid at a rate of 108π m³ / sec. How fast is the height increasing?
- 20. A boat is being pulled toward a dock by a rope attached to its bow through a pulley on the dock 7 feet above the bow. If the rope is hauled in a rate of 4 ft / sec, how fast is the boat approaching the dock when 25 feet of rope is out?

Chapter 2 Review Worksheet Answers

$$1. \qquad f'(x) = 6$$

11.
$$\frac{\sec\theta(\tan\theta-1)}{(1+\tan\theta)^2}$$

$$2. \qquad \frac{2x^2 + 1}{\sqrt{x^2 + 1}}$$

*
$$\tan^2 \theta - \sec^2 \theta = -1$$

3.
$$f'(x) = \frac{-2x^2 - 5x + 4}{x^3 (x - 1)^2}$$

12.
$$y' = \frac{-\cos\left(\cos\sqrt{x}\right)\left(\sin\sqrt{x}\right)}{2\sqrt{x}}$$

$$f'(2) = -\frac{7}{4}$$

13.
$$\frac{1}{7}$$

$$4. \qquad f'(x) = 1$$

14.
$$\frac{1}{2}$$

5.
$$y' = \frac{-24x^5}{\left(x^6 - 2\right)^2}$$

15.
$$y + 29 = -39(x-5)$$

$$y'(1) = -24$$

16.
$$x = \pm \sqrt{\frac{3}{2}}$$

6.
$$-2 \sin x \cos x$$
 or $-\sin 2x$

$$17. \qquad \left(-\frac{3}{2}, \frac{41}{4}\right)$$

$$7. \qquad \frac{dy}{dx} = \frac{3\cos 3x}{2\sqrt{\sin 3x}}$$

18.
$$\frac{3}{4} \frac{in}{\sec x}$$

8.
$$\frac{dy}{dx} = -4x\csc^2(x^2)\cot(x^2)$$

19.
$$3 \frac{m}{\text{sec.}}$$
 * r will not change

9.
$$\frac{dr}{d\theta} = -\cos\theta \sin\left(1 + \sin\theta\right)$$

20.
$$-\frac{25}{6} \frac{ft}{\text{sec}}$$
 * h will not change

$$10. \frac{\sin x \sin^2 y - \cos^2 x \cos y}{\sin^3 y}$$

* negative :: going towards dock