AP Calculus

Graphical and Numeric Evaluations of f, f' and f''

1. The graph below is the graph of f', the derivative of f.

The domain of the derivative is $-5 \le x \le 6$.

- a) The critical points (numbers) for f are x =
- b) The critical points (numbers) for f' are x =
- c) f has a local maximum when x =_____.
- d) f has its maximum value on [-5,6] when x =
- e) f is decreasing on the interval(s)
- f) The graph of f is concave up on the interval(s) ______.
- g) The x coordinate of the points of inflection are x =.
- h) f' has its maximum value when x =
- i) f'' has its maximum value when x =_____.
- j) Does f' have a minimum value on [-5,6]? Explain.
- k) Does f'' have a minimum value on [-5,6]? Explain.

2. Given that f, f' and f'' are all continuous for all x, use the information in the table to answer the questions that follow.

7 984			
x	f(x)	f'(x)	f''(x)
2	6	2	-8
4	12	0	-1
6	15	3	0
8	20	4	5
10	25	2	6

Fill in the blanks with TRUE, FALSE, or NOT DETERMINED

2)	f has a loca	I minimum at $x = 8$.	
aj	j mas a roca	x = 0.	The state of the s

b)
$$f$$
 has a local maximum at $x=4$.

c)
$$f$$
 has a POI when $x = 6$.

d)
$$f$$
 has a POI on the interval $6 < x < 10$.

e)
$$f$$
 is increasing on [2,10].

f)
$$f(x) = 17$$
 has a solution in [2,10].

g)
$$f'(x) = 2.25$$
 has a solution in [6,8].

h)
$$f'(x) = 2.50$$
 has a solution in [6,8].

i)
$$f'(x) = 2.75$$
 has a solution in [6,8].

j) The line
$$y = 15$$
 is a horizontal asymptote.

k) The line
$$x = 7$$
 is a vertical asymptote.