2.1 - 2.4 Day before Quiz Worksheet.

Non-Calculator Questions.

1. If
$$f(x) = \frac{3x^2 + x}{3x^2 - x}$$
, then $f'(x) = \frac{3x^2 + x}{3x^2 - x}$.

2. If the function
$$f$$
 is continuous for all reals and if $f(x) = \frac{x^2 - 7x + 12}{x - 4}$ when $x \neq 4$, then $f(4) =$

- (A) 1 B) $\frac{8}{7}$ C) -1 D) 0 E) undefined
- 3. For a function h(t) to be continuous at t = c, what three conditions must be met?

4. Given
$$f(\theta) = \cos 2\theta$$
, $\left[0, \frac{\pi}{6}\right]$.

E(0)-E(TI(6) 1-12 - 1-8 = 1-8

c) Write the equation of the line tangent to
$$f(\theta)$$
 at $\theta = \frac{\pi}{12}$.

5. Given
$$k(x) = \frac{1}{x}$$

a) Write the equation of the line tangent to k(x)

b) Sketch both k(x) and the tangent line.

that goes through the point
$$\left(\frac{1}{2},2\right)$$
.

Sketch both $k(x)$ and the tangent line.

Graphing Calculator Question.

- 6. Given $s(t) = -16t^2 + v_0t + s_0$ for free falling objects. A silver dollar is dropped from the top of a building that is 1362 feet tall.
 - a) Determine the position and velocity functions for the coin. $S(t) = -(6t^2 + (36) + 26)$ b) Determine the average velocity on the interval [1 2]
 - b) Determine the average velocity on the interval [1,2].
 - -32ft/s, -64f/s c) Find the instantaneous velocities when t = 1 and t = 2.
 - d) Find the time required for the coin to reach ground level.
 - e) Find the velocity at impact. -32(9,2263)

F(1)-f(2) 13-66-1298 = ~ 48 CHS