2.1 - 2.4 Day before Quiz Worksheet.

Non-Calculator Questions.

1. If
$$f(x) = \frac{3x^2 + x}{3x^2 - x}$$
, then $f'(x) =$

- A) 1 B) $\frac{6x^2+1}{6x^2-1}$ C) $\frac{-6}{(3x-1)^2}$ D) $\frac{-2x^2}{(x^2-x)^2}$ E) $\frac{36x^3-2x}{(x^2-x)^2}$

2. If the function
$$f$$
 is continuous for all reals and if $f(x) = \frac{x^2 - 7x + 12}{x - 4}$ when $x \ne 4$, then $f(4) =$

- A) 1 B) $\frac{8}{7}$ C) -1 D) 0 E) undefined

3. For a function
$$h(t)$$
 to be continuous at $t = c$, what three conditions must be met?

- 1.
- 2.
- 3.

4. Given
$$f(\theta) = \cos 2\theta$$
, $\left[0, \frac{\pi}{6}\right]$.

- a) Find the average rate of change over the interval.
- b) Find the instantaneous rate of change at $\theta = \frac{\pi}{12}$.
- c) Write the equation of the line tangent to $f(\theta)$ at $\theta = \frac{\pi}{12}$.

5. Given
$$k(x) = \frac{1}{x}$$

- a) Write the equation of the line tangent to k(x) that goes through the point $\left(\frac{1}{2}, 2\right)$.
- b) Sketch both k(x) and the tangent line.

Graphing Calculator Question.

- 6. Given $s(t) = -16t^2 + v_0t + s_0$ for free falling objects. A silver dollar is dropped from the top of a building that is 1362 feet tall.
 - a) Determine the position and velocity functions for the coin.
 - b) Determine the average velocity on the interval [1,2].
 - c) Find the instantaneous velocities when t = 1 and t = 2.
 - d) Find the time required for the coin to reach ground level.
 - e) Find the velocity at impact.